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Time Evolution of a One-Dimensional Point System: 
A Note on Fritz's Paper 
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In a companion paper (Ref. 5) Fritz studies the time evolution of a one- 
dimensional point system which was introduced by Spitzer as a model of traffic. 
In the present paper we improve some of the results of Ref. 5 by using a 
different approach. Our results are obtained in a very simple and 
straightforward way but the techniques employed require conditions somewhat 
stronger than those assumed in Ref. 5. 

KEY WORDS: Nonlinear diffusion equations; hydrodynamical behavior; 
coupling of random walks. 

There is a very simple and direct way to derive and improve some of  the 
results of  Ref. 5, as we shall see in this paper. Our method, as compared  to 
that of  Ref. 5, requires stronger assumptions and our techniques seem inade- 
quate for studying extensions to many-dimensional  cases. On the other hand 
our procedure looks very simple and more flexible so it might become useful 
in the analysis of  other models. 

We consider the equations 

d 
dt 6(n, t) = g'(6(n + 1, t)) + g'(6(n -- 1, t)) - 2U'(6(n,  t)) ( l a )  

6(n, O) = 6(n) ( lb )  

where n E Z, t> /0 ,  U E  C~176 and it is a convex symmetr ic  function of 
r E  [R. Throughout  we shall consider the case when there are positive 
constants a, b, 6 ' ,  6" so that 

0 < a ~  U " ( r ) ~ B  < oo (2) 

0 < &' ~< 6(n) ~< 6" < oo (3) 
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We refer to Ref. 5 for a discussion on the interpretation and meaning of 
Eq. (1). It is easy to see that Eq. (1) has a unique solution and that 
6(n, t) = ~, for all n E Z and all t/> 0, is a solution of Eq. (la), i.e., 6(n) = 6 
is a stationary profile. It is less obvious but still true that these are the only 
stationary profiles; see the Remarks to Lemma 2 below. 

The question we are interested in concerns the time evolution of "slowly 
varying" initial profiles, i.e., the hydrodynamical behavior of Eq. (1), cf. 
Ref. 5 for the use of such terminology and Ref. 3 for a survey on the subject. 
We state precisely what is the problem and its answer in the following. 

Theorem 1. Assume UC C~176 is a symmetric and convex function 
and that Eq. (2) holds. Let e E (0, 1] and denote by 6,(n, t) the solution of 
Eq. (1) with initial datum 6~(n, 0 )=A(en) ,  where A(r) is in C ~ ( ~ )  and 

O< a ' ~ A ( r ) ~ 6 "  < o0, IIA'j l=suplA'(r)l<6"'  < oo (4) 
r ~ N  

for suitable 6', 6% 6"' and where A' denotes the derivative of A. Define for 
~ - l r C Y  a n d r / > 0  

At(r, ~) = 6 ~(e- 'r, e-2v) (5) 

and let A~(r, r) for r C N and r >/0 be its linear interpolation. Then 

lim A ~(r, r) = A(r, r) (6) 
B--*0 

where A(r, r) is in C~ X P+)  and it satisfies the equation 

~ [U"(A(r,r)) ~--~A(r,r)] ~(r,:) = ~  (7a) 

A(r, O) = A(r) (7b) 

The proof of Theorem 1 is obtained in two steps: first we prove that At(r, r) 
is an equicontinuous and bounded family of functions, so that by the 
Ascoli-Arzel~ theorem (4) it converges by subsequences on the compacts. In 
the second step we prove that the limiting points satisfy Eq. (7), hence they 
coincide. 

Equicontinuity. The function U'(c~): ~+ ~ ~+ is invertible so we can 
change variables and go from 6(n, t) to u(n, t), where 

u(n, t) = U'(6(n, t)) (8) 



Time Evolution of a One-Dimensional Point System 649 

In the following one should think of cS(n, t) as a function of u(n, t) via 
Eq. (8). From Eq. ( la)  we get 

~3 
u(n, t) = G(n, t)[u(n + 1, t) + u(n -- 1, t) - 2u(n, t)] (9a) 

u(n, O) = u(n) (9b) 

G(n, t) = U"(a(n, t)) (9c) 

Because of G(n, t) Eq. (9a) is nonlinear. For the moment it is convenient to 
think of G(n, t) as a known function. Then Eq. (9a) becomes a simple linear 
diffusive equation with a nice probabilistic interpretation. Fix n C Z and 
T > 0. Let x(t), 0 ~< t ~< T, be a symmetric random walk on Z which starts 
from n and jumps on the nearest-neighbor sites with equal probability and 
intensity which depends on the time and the site where the walker is. The 
intensity g is given by 

g(n, t) = G(n, T - -  t), n C Z, 0 <~ t <~ T (10) 

cf. Eq. (9c). Notice that by Eq. (2) g is uniformly bounded away from zero 
and infinity. We denote by Pn,r the law of such walk and by E, ,  r its expec- 
tation. Then we obviously have 

u(n, t) = E . ,~ (u (x (~) )  (11) 

where u(n) is defined in Eq. (9b). 
For the proof of equicontinuity the crucial estimate is the following: 

I.emma 2. Let I[u[[ be the sup norm for the initial datum, i.e., 
[[uH~[u(n)[ for all n C Z .  Let a be as in Eq. (2). Then for every T > 0 ,  n 
and n' in Z, 

]E , , r (u (x (T ) ) ) -E , ,T (u (x (T ) ) ) [  <. c(aT) -1/2 In - n'[ HuH (12) 

where c is some "universal" constant. 

ProoL Given n, n', and T we consider the following coupling Q 
between the random walks xl( t  ) and x2(t ) which start from n and n' with 
marginal laws Pn,T and Pn',r" The two walks, x~(t) and x2(t), move indepen- 
dently until they meet, at which time they stick together and from then on 
they move the same. Denoting by Q the law of such process and by Eo its 
expectation, we have 

I E. ,T(U(x(  T) ) ) - -E. , ,T(u(x(T)))[  = I Eo(u(x  l ( t ) ) - u(xz( t ) ) )] 

~< Ilu]r Q({x , (T )  4: x2(T)} ) (13) 
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The right-hand side of Eq. (13) is estimated in terms of the probability that 
two random walks which move independently do not meet before T and this 
is then reduced to the corresponding probability for two independent walks 
which move with constant intensity a; cf. Eq. (2). To do that we argue as 
follows. We consider the difference process x l ( t  ) - xz ( t  ), 0 <~ t <~ T. While 
the times of jump for such process depend on the past history of x~(t) and 
Xz(t ) this is not so for the value of the jump itself, which is always + 1 with 
probability 1/2. Hence if we look at the discrete time process of the jumps of 
x~(t) - X z ( t  ) this is a simple symmetric random walk. The law of the jumping 
times in the Q process is stochastically smaller than the law of the jumping 
times for independent walks each with constant intensity a, because the 
jumps in the Q process have intensity larger than 2a; cf. Eqs. (9c) and (2). 

The proof of Eq. (12) is then completed by using classical estimates on 
the return time to the origin for a simple random walk. II 

R e m o r k s  to L e m m a  2. From Lemma 2 it [easily] follows that if 
5(n, t ) =  5(n, 0 ) >  0 for all n and some t > 0, then there exists 6 such that 
6(n, t ) =  5 for all n and t. Hence all the stationary profiles are constant 
profiles. 

We pose 
v ~(r, r) =- U'(A~(r, r)) (14) 

and we will first prove equicontinuity for the vs. For ~ ~r C Z 

v~(r, r) = u~(e-lr ,  e 2 0 (15) 

where u" is the solution of Eq. (9) with initial value 

u~(n) = U' (A(en))  (16) 

Hence fo re  l r C Z  a n d r ) 0  

v ~(r, r) = E ~ , r [U ' (A(ex (e -  2r)))] (17) 

We need to show that given any (r, r) and ~ > 0 there are R and T positive 
so that the following holds. For any r '  and r '  such that ] r - - r '  I <~R and 
I r - r ' L <  T, r '  ~>0, 

Ivy(r, r) -- v~(r', r')] < ~ (18) 

The above easily follows from the following considerations: 

(1) By Lemma 2 for r > 0 fixed, 

lug(n, e 2v) - u~(n ', e-2v)l ~< c(a'c) - ' /2  ]en -- en'l (19) 

hence by Eq. (15) the equal time estimate in Eq. (18) follows. 
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(2) By Eq. (11) we can write for t '  > t 

u(n, t') = En,t,(u(x(t' - t), t) (20)  

We can reduce then Eq. (18) to an estimate at equal times. We need to 
control 

I x ( t ' - t ) - n l  

We notice that there exist constant c' and e" so that for any )~ >/0 

P,,r({ sup I x ( O - n ]  >/)~(bT)l/2})<~ c ' exp(-c"2)  
O<~t<~T 

(21) 

where b is the constant appearing in Eq. (2). In fact the jumps of x(t) are 
always + 1 with probability 1/2 and the times of the jumps are stochastically 
larger than those of a random walk which moves with constant intensity b. 
Equation (21) becomes then a classical estimate for simple symmetric 
random walks. 

(3) It remains to consider the case when we are given (r, 3) with r = 0, 
because in such case we cannot use Lemma 2. It follows from point (2) 
above that I x ( e - 2 r ) -  e- lr l  is of order e -1 x,/r. By Eq. (17) and the assumed 
smoothness of U' and A we then get that 

I v 3) - v . ( r) l  < 

for r < T~ and T~ can be chosen independently of e and r. 

So far we have proven that v~(r, r) converges by subsequences, then the 
same holds also for A~(r, r). Let v(r, r) and A(r, r) be some limiting values 
for v~ and A~, respectively, then v(r, r ) =  U'(A(r, r)) Furthermore from 
Eq. (17) and taking the limit as e goes to zero we obtain that 

v(r, r) = E~,~(v(x(v)) (22) 

v(r) = U'(A(r)) (23) 

where for fixed r > 0 and 0 ~< t ~< r, r ~ ~, Ptr. 
x(t'),  t ~< t' ~< r, which starts at r at time t and satisfies the equation 

dx(t ')  = a(x(t '),  t') db(t') (24) 

where b(t) is a standard Brownian motion and 

a(r, t') = G(r, r --/t)l/2 a(r, t) = U'(A(r,  t)) (25) 

denotes the law of the process 
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Etr,~ denotes the corresponding expectation. We shall prove that there is only 
one continuous bounded function v for which Eqs. (22) and (23) hold [with 
the conditions Eqs. (24) and (25)] and this will complete the proof of 
Theorem 1. The argument is a straightforward adaptation to our context of 
Theorem 2.1 of Ref. 1; cf. also Ref. 2. We start noticing that there exists a 
C ~ function v(r, t) for which Eqs. (22)-(25) hold, this is the "classical" 
solution of 

82 
8-7cq v(r, r) = G(r, r) ~ v(r, r), v(r, O) = v(r) (26) 

Let us now assume that there is some other function if(r, r) such that 

6(r, r) = E~162 (27) 

dy(t') = 6(y(t'), t') db(t') (28) 

We f i x r > 0 a n d f o r 0 ~ < t ~ < s ~ < r w e s e t  

yt(S) = s u p  gtr,~: IX(S) -- y ( s ) [  2 (29) 
r 

~(s)  = sup Iv(r, s) - ~(r, s)l 2 (30) 
r 

By using Eqs. (28) and (29) we have for 0 ~< t ~< s ~< r 

E~r,r Ix(s) - y(s)[ 2 <~ [ dt' Etr,T [Cr(X(t'), t') -- ff(y(t'), t')[ 2 

<~ 2 ;) dt '  Etr ,~(lo(x( t ' ) ,  t ' )  - a(y(t'), t')l 2 

+ [~r(y(t'), t ') - 6(y(t ') ,  t')[ z) 

< 2f)  dt' Ilia' [I 2 7t(t ') + A(t')] 

hence 

!; / ( s )  ~< 2 dt'[llcr'[[ 2;,t(t') +A(t ' ) ]  (31) 

A(t) < Itv' II 2 / ( r )  (32) 

where ]la' II and ]Iv' II are the sup norm for cr'(r, t) and v'(r). From Eqs. (31) 
and (32) uniqueness follows for small r. Iterating the argument uniqueness is 
proven for all times. 

Concluding Remarks. (1) One does not need to use PDE theory to 
have a classical solution of Eq. (26) since one can prove directly, like in 
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Ref. 1, that there is a Lipshitz continuous solution of  the problem stated in 
Eqs. (22)-(25):  this is enough for deriving Eqs. (31) and (32). 

(2) For  uniqueness we only need to know that there is a solution 
which is Lipshitz continuous: from here uniqueness follows in the larger 
class of  only continuous functions. 

(3) One of  the difficulties in Ref. 5 comes from the fact that at the last 
step of  the proof  one needs to know that the limiting function is Lipshitz 
continuous. We avoid that by using the method outlined above. We remark 
that we do not have Lipshitz continuity of  v~(r, v) by using Lemma 2, 
because of the factor (r) -1/;  in Eq. (16). 

(4) In the interpretation of  Eq. (1) as a model of  traffic, O(n) 
represents the distance between car n + 1 and car n. Equation (1) is related 
then to the set of  equations 

co(n, t) = U'(c~(n, t))  - U ' (6 (n  - 1, t)) (33a) 

co(n + 1, t) -- co(n, t) = 6(n, t) (34) 

Our previous considerations extend to this case since we have 

co(n, t) = sg(n, t)[co(n + 1, t) + co(n - 1, t) - 2co(n, t)] (35) 

where X2(n, t) is the first order Taylor  Lagrange expension for the right-hand 
side of  Eq. (33a). 
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